谷歌开源小模型Gemma 2 2B
谷歌DeepMind开源了轻量级模型Gemma 2 2B,其在大模型竞技场上的分数超越了GPT-3.5、Llama 2 70B等更大参数的模型。只有20亿参数使得Gemma 2 2B可以轻松在手机、PC等终端设备上快速运行。开发者实测在Google AI Studio上,其推理速度达到30~40 tokens/s。
与Gemma 2 2B一起推出的,还有用于增强模型可解释性的工具Gemma Scope,以及用于过滤有害内容的安全分类模型ShieldGemma。Gemma Scope基于稀疏自动编码器(SAE)放大模型中的特定点,并采用JumpReLU架构对其进行优化,从而帮助解析模型中处理的密集复杂信息,像一个显微镜一样让研究人员能“看到”模型内部。ShieldGemma则针对仇恨言论、骚扰、色情内容、危险内容四个危害领域构建,在响应测试中超过GPT-4等基准模型。
Gemma系列模型最初在今年2月推出,是谷歌DeepMind在Gemini模型的经验基础上构建的开源模型。6月,谷歌推出第二代开源模型Gemma 2,包括9B、27B两种参数规模,其中27B模型迅速在LMSYS大模型竞技场上跃升开源模型前沿。
Gemma 2 2B是从更大规模的模型中提炼而来的,是继27B、9B后谷歌推出的第三款Gemma 2模型。作为一款只有20亿参数的轻量模型,Gemma 2 2B并没有牺牲性能来换轻便。在LMSYS大模型竞技场(Chatbot Arena)排行榜中,Gemma 2 2B以1126分的成绩超越了GPT-3.5,以及其数十倍参数规模的Mixtral 8x7B、Llama 2 70B模型。
运行速度是轻量级模型的一大优势。具体有多快呢?苹果机器学习研究员Awni Hannun在他的iPhone 15 pro上的MLX Swift测试了Gemma 2 2B,其推理速度肉眼可见的快。
在部署方面,Gemma 2 2B提供灵活的部署方式,可在各种硬件上高效运行,包括边缘设备、笔记本电脑,或是基于Vertex AI进行云部署。开发者可以在Hugging Face、Kaggle等平台下载Gemma 2 2B的模型权重,用于研究和商业应用,也可以在Google AI Studio中试用其功能。
生成式AI发展至今,模型从“卷”参数“卷”规模,到现在“卷”轻便“卷”安全,体现了在技术落地的过程中,离用户更近、成本更低、更能满足特定需求的重要性。AI PC、AI手机逐渐进入消费者的生活,在这个过程中,如何将大模型“塞进”小巧的终端设备,并且保障用户的隐私安全,是各大AI厂商亟待解决的问题。
开源地址:https://huggingface.co/google/gemma-2-2b