集成ChatGPT和LLM到各种应用程序中只是使用语言模型的潜力的一部分。

ChatGPT和LLM技术的出现使得这些最先进的语言模型席卷了世界,不仅是AI的开发人员,爱好者和一些组织也在研究探索集成和构建这些模型的创新方法。各种平台如雨后春笋般涌现,集成并促进新应用程序的开发。

AutoGPT的火爆让我们看到越来越多的自主任务和代理利用了GPT-4的API。这些发展不仅增强了处理集成不同系统的复杂任务的能力,而且还推动了我们通过自主人工智能所能实现的界限。

我们这里将整理一些开源的类似AutoGPT的工具系统,这些工具和应用程序可以大致分为命令行接口(CLI)和基于浏览器的解决方案,HuggingGPT可以同时支持这两种解决方案。

命令行:AutoGPT, BabyAGI

浏览器:AgentGPT, CAMEL, Web LLM

Auto-GPT

尽管Auto-GPT是一个实验性的开源应用程序,但是它的增长是迅速的。该程序由GPT-4驱动,可以自主实现设定的任何目标。

GitHub: https://github.com/Significant-Gravitas/Auto-GPT

看看它的Github Star的增长幅度可以看到最近的火爆。

AgentGPT

AgentGPT是一种基于web的解决方案。它允许配置和部署自治AI代理,并让它完成任何目标。它将尝试通过思考要做的任务、执行任务并从结果中学习来达到目标。

该平台目前处于测试阶段,正在开发以下功能:

  • 通过矢量DB进行长期的记忆;
  • 通过LangChain(LangChain是一个用于构建基于大型语言模型LLM的应用程序的库)进行web浏览;
  • 与网站和人的互动;
  • 用户和身份验证。

GitHub: https://github.com/reworkd/AgentGPT

网站: https://agentgpt.reworkd.ai/

BabyAGI

BabyAGI任务驱动自治代理的精简版本。

它的主要思想是基于先前任务的结果和预定义的目标来创建任务。然后,脚本使用OpenAI的语言模型功能来创建基于目标的新任务,Pinecone来存储和检索上下文的任务结果,这可以说是最精简的自治AI架构了,如果你对这个方向有兴趣,可以看看他的代码。

GitHub: https://github.com/yoheinakajima/babyagi

网站: http://babyagi.org/

 

HuggingGPT

微软的HuggingGPT,又名JARVIS,它包括一个LLM作为控制器和许多专家模型作为协作执行者(来自HuggingFace Hub)。它工作流程包括四个阶段:

  • 任务规划:使用ChatGPT分析请求以了解意图,并将其分解为可能的可解决任务。
  • 模型选择:使用ChatGPT根据描述选择专家模型。
  • 任务执行:调用并执行每个选定的模型,并将结果返回给ChatGPT。
  • 响应生成:最后,使用ChatGPT集成所有模型的预测并生成响应。

GitHub: https://github.com/microsoft/JARVIS

HF: https://huggingface.co/spaces/microsoft/HuggingGPT

 

Web LLM

Web LLM是一个基于LLM和基于LLM的聊天机器人,在没有服务器支持的情况下在浏览器内运行,并通过WebGPU加速。从技术上讲,Web LLM不是人工智能的自治解决方案,而是轻量级的网络聊天机器人。

GitHub: https://github.com/mlc-ai/web-llm

 

CAMEL

CAMEL  是 ”Communicative Agents for ‘Mind’ Exploration of Large Scale Language Models“的缩写,它提出了一种新颖的代理框架,即角色扮演,作为 AutoGPT 和 AgentGPT 的替代方案。

GitHub: https://github.com/lightaime/camel

网站: http://agents.camel-ai.org/

 

GPTRPG

这个系统将游戏和大语言模型结合,主要包含2个部分。‍

一个支持llm的AI代理的简单的类似rpg的环境,通过OpenAI API将AI代理植入到游戏环境的角色中。

这是基于最近发布的一篇论文,其中部署了多个代理来自主参与在线游戏。

GitHub: https://github.com/dzoba/gptrpg

Arxiv:https://arxiv.org/abs/2304.03442

 

 

Voyager

英伟达首席科学家Jim Fan等人把GPT-4整进了「我的世界」(Minecraft)——提出了一个全新的AI智能体Voyager。
Voyager的厉害之处在于,它不仅性能完胜AutoGPT,而且还可以在游戏中进行全场景的终身学习!
比起之前的SOTA,Voyager获得的物品多出了3.3倍,旅行距离变长了2.3倍,解锁关键技能树的速度快了15.3倍。
对此,网友直接震惊了:我们离通用人工智能AGI,又近了一步。

总结

集成ChatGPT和LLM到各种应用程序中只是使用语言模型的潜力的一部分。这些模型是为了处理自然语言任务而设计的,包括文本生成、翻译、摘要、问答等等。未来的语言模型将更加先进和智能,能够在更广泛的应用领域中提供帮助。

例如,未来的语言模型可以用于更准确的机器翻译,使人类之间的跨文化交流更加便利。他们也可以用于自动摘要和内容生成,以帮助作者和媒体机构更快地创建和发布内容。此外,语言模型也可以用于语音识别和自然语言处理,以便人们能够更好地与计算机交互。

总之,随着语言模型技术的不断进步,我们可以期待看到更多的创新和进步。这些模型将成为人工智能领域的核心技术,为我们提供更好的解决方案和更广泛的应用场景。

作者:Tristan Wolff